Impressum Datenschutz

Mathematik in der Oberstufe

Vektorprodukt / Kreuzprodukt: Basiswissen

Das Vektorprodukt, das auch Kreuzprodukt genannt wird, bildet aus zwei Vektoren einen neuen Vektor. In der Schulmathematik wird es seit einiger Zeit zunehmend eingesetzt, weil es verschiedene Rechnungen erheblich abkürzt.

Vektorprodukt: Definition und wichtige Eigenschaften

Das Vektorprodukt $\vec u \times \vec v$ (gelesen: „u kreuz v“) zweier Vektoren wird berechnet mit der Formel $\vec u \times \vec v = \begin{pmatrix} u_1\\u_2\\u_3\end{pmatrix} \times \begin{pmatrix} v_1\\v_2\\v_3\end{pmatrix}= \begin{pmatrix} u_2 v_3-u_3 v_2\\u_3 v_1 - u_1 v_3\\u_1 v_2-u_2 v_1\end{pmatrix}$.

Die wichtigsten Eigenschaften:

  1. Der Vektor steht senkrecht auf den beiden Ausgangsvektoren, wenn diese linear unabhängig sind. Insbesondere kann man auf diese Weise sehr einfach einen Normalenvektor einer Ebene berechnen.
  2. Spannen die beiden Ausgangsvektoren ein Parallelogramm auf, so ist der Betrag des Vektorprodukts gleich dem Flächeninhalt des Parallelogramms.

Anwendungsbeispiel 1: Normalenvektor einer Ebene

Gesucht ist ein Normalenvektor der Ebene $E\colon \vec x = \begin{pmatrix} 2\\3\\7\end{pmatrix} +r\cdot \begin{pmatrix} 3\\4\\4\end{pmatrix}+t\cdot \begin{pmatrix} 1\\-2\\3\end{pmatrix} $, also ein Vektor, der senkrecht auf der Ebene steht.

Ein Vektor steht senkrecht auf einer Ebene, wenn er senkrecht zu den beiden Spannvektoren steht. Der Stützvektor hat dagegen nichts mit dem Normalenvektor zu tun, denn er bewirkt ja nur eine Verschiebung der Ebene. Daher bilden wir das Kreuzprodukt aus den beiden Spannvektoren:

$\vec u \times \vec v = \begin{pmatrix} 3\\4\\4\end{pmatrix}\times \begin{pmatrix} 1\\-2\\3\end{pmatrix}=\begin{pmatrix} 4\cdot 3-4\cdot (-2)\\4\cdot 1-3\cdot 3\\3\cdot (-2)-4\cdot 1\end{pmatrix}=\begin{pmatrix} 20\\-5\\-10\end{pmatrix}$
Dieser Vektor ist bereits ein möglicher Normalenvektor. Da es bei dieser Fragestellung nur auf die Richtung und nicht auf die Länge ankommt, verkürzt man den Vektor oft, um eventuell nachfolgende Rechnungen zu vereinfachen. In diesem Fall teilt man durch 5 und verwendet $\vec n =\begin{pmatrix} 4\\-1\\-2\end{pmatrix}$ als Normalenvektor.

Anwendungsbeispiel 2: Flächeninhalt eines Parallelogramms

ParallelogrammGesucht ist der Flächeninhalt des Parallelogramms, das von den Vektoren $\vec u =\begin{pmatrix} 2\\6\\3\end{pmatrix}$ und $\vec v =\begin{pmatrix} 2\\1\\-2\end{pmatrix}$ aufgespannt wird.

Dazu berechnen wir zunächst das Kreuzprodukt der beiden aufspannenden Vektoren. Die auftretenden Produkte werden sofort berechnet, die Differenzen in einem zweiten Schritt:
$\vec u\times \vec v= \begin{pmatrix} 2\\6\\3\end{pmatrix}\times \begin{pmatrix} 2\\1\\-2\end{pmatrix}=\begin{pmatrix} -12-3\\6-(-4)\\2-12\end{pmatrix}=\begin{pmatrix} -15\\10\\-10\end{pmatrix}$.

Der Vektor darf für die Flächenberechnung nicht verkleinert werden! Den Flächeninhalt berechnet man jetzt durch den Betrag des Vektorproduktes:
$A=|\vec u \times \vec v |=\sqrt{(-15)^2+10^2+(-10)^2}=\sqrt{425}\approx 20{,}62\text{ FE}$ (Flächeneinheiten).

Anwendungsbeispiel 3: Flächeninhalt eines Dreiecks

DreieckGesucht ist der Flächeninhalt des Dreiecks mit den Eckpunkten $A(-2|1|-1)$, $B(2|8|3)$ und $C(6|-3|-2)$.

Ein Dreieck ist ein halbes Parallelogramm, kann also mit der gleichen Methode (nur mit dem Faktor $\frac 1 2$ versehen) berechnet werden. Dazu müssen wir in diesem Fall erst zwei aufspannende Seitenvektoren berechnen:

$\vec u = \overrightarrow{AB}=\vec b - \vec a = \begin{pmatrix}2\\8\\3\end{pmatrix}- \begin{pmatrix}-2\\1\\-1\end{pmatrix} =\begin{pmatrix}4\\7\\4\end{pmatrix}\\ \vec v = \overrightarrow{AC}=\vec c - \vec a = \begin{pmatrix}6\\-3\\-2\end{pmatrix}- \begin{pmatrix}-2\\1\\-1\end{pmatrix} =\begin{pmatrix}8\\-4\\-1\end{pmatrix}$

Aus diesen beiden wird wie gewohnt das Vektorprodukt berechnet:
$ \overrightarrow{AB}\times \overrightarrow{AC}= \begin{pmatrix}4\\7\\4\end{pmatrix}\times \begin{pmatrix}8\\-4\\-1\end{pmatrix}=\begin{pmatrix}-7-(-16)\\32-(-4)\\-16-56\end{pmatrix} = \begin{pmatrix}9\\36\\-72\end{pmatrix}$

Der Flächeninhalt des Dreiecks beträgt damit
$A_{\Delta} = \frac{1}{2}\cdot \left| \overrightarrow{AB}\times \overrightarrow{AC}\right|= \frac{1}{2}\cdot \sqrt{9^2+36^2+(-72)^2}=40{,}5 \text{ FE}$.

Letzte Aktualisierung: 02.12.2015;   © Ina de Brabandt

Teilen Info Bei den "Teilen"-Schaltflächen handelt es sich um rein statische Verlinkungen, d.h. sie senden von sich aus keinerlei Daten an die entsprechenden sozialen Netzwerke. Erst wenn Sie einen Link anklicken, öffnet sich die entsprechende Seite.

Werbung

Skalarprodukt, Vektorprodukt

Beispiele, Erklärungen

Werbung

.